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Improving Microwave Imaging by
Enhancing Diffraction Tomography

R. D. Murch, Member, IEEE, and T. K. K. Chan

Abstract— In this paper, a technique for enhancing the re-
construction quality of diffraction tomography for microwave
imaging is presented. The technique invokes the WKB approxi-
mation in conjunction with utilizing measurement data at more
than one frequency to overcome some of the limitations of diffrac-
tion tomography. The resulting formulation has a mathematical
interpretation which leads to some interesting insights into the
limitations of diffraction tomography. Numerical implementation
of the technique is also described and actual simulation results
using this implementation for a variety of two-dimensional (2-D)
objects are provided. These show that indeed significant improve-
ments over conventional diffraction tomography are possible with
our enhanced technique.

I. INTRODUCTION

ICROWAVE imaging has potentially many important

technological applications. These include medical
imaging [1], nondestructive testing [2], geophysics [3],
and robotic vision [2]. The advantages microwave imaging
offers over more conventional imaging techniques are
numerous. They include the relatively low health hazard
of nonionizing low power microwaves, its ability to image
properties such as permittivity and conductivity, and the
likely cost competitiveness of the imaging equipment.
Consequently microwave imaging has attracted much interest
from researchers in recent times [1]-[9].

The difficulty with microwave imaging, however, is the
associated problem with performing object reconstruction.
Because microwaves experience significant attenuation, scat-
tering, and diffraction standard tomographic reconstruction
schemes are not readily applicable and are of only limited
usefulness. In an attempt to overcome this problem, two ap-
proaches to microwave imaging have been investigated in the
recent past [10]. The first is based on diffraction tomography
under either the Born or Rytov approximations. The advantage
of this approach is that it is comparatively straightforward to
apply and usually computationally efficient. The disadvantage,
however, is that due to the underlying approximations involved
the type of objects imaged accurately are usually limited [4].
The second approach utilizes some form of exact description
of wave motion to formulate reconstruction as a nonlinear
equation which is solved numerically. The advantage is that
in principle any object type can be imaged accurately since
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wave motion is described exactly [11]. However, in practice
the computational overheads of this approach are usually so
large that restrictions on either the object size or type of object
must be enforced [11].

In this paper, an attempt to fill the middle ground be-
tween these approaches is performed. We describe a method
that utilizes the comparatively straightforward formulation of
diffraction tomography while incorporating some of the more
intricate wave phenomena found in the approaches based
on exact descriptions of the underlying wave motion. The
inspiration for our technique is that it invokes concepts from
the WKB high frequency approximation in conjunction with
utilizing scattering measurements at more than one frequency.
Not only do the simulation results reveal that significant
improvements are possible in image quality, but the resulting
interpretation of diffraction tomography by our method also
illuminates some interesting new concepts.

Alternative solutions have been devised in an attempt to
overcome limitations associated with diffraction tomography.
However, these methods either require a priori information
about the object [12], [13], or when no a priori information is
required, the few numerical results so far presented do not
suggest that the improvements are likely to be spectacular
[14]-{16].

In Section II, necessary preliminaries are introduced to
define our microwave imaging problem. The theory of our
enhancements to diffraction tomography are formally intro-
duced in Section I where the interpretation of our formulation
is given. The methods for implementing and reconstructing
objects under our solution are then given in Section IV.
Simulation results are presented in Section V and these results
are compared to what are obtained when the conventional
Born approximation is invoked. Finally, in Section VI and
Section VII discussions and conclusions are given to examine
the validity and significance of our technique.

II. PRELIMINARIES

Arbitrarily chosen (but considered fixed, once chosen)
Cartesian coordinates z, y, and z are set up in three-
dimensional (3-D) space. Scattering objects with cylindrical
symmetry in the z-direction are considered so that our objects
can be considered two-dimensional (2-D) with only variations
in the 2-D xy-plane. We denote the 2-D xy-plane by T and
partition it as T = Y, U T_ so that Y_ represents the
region of 2-D space in which the scattering object exists. The
scattering, object is assumed to have permittivity e(z, ») and
permeability o and to be surrounded by free space (eg, ).
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We consider electromagnetic wave motion polarized in
the ~-direction with free-space angular frequency w. The
electromagnetic wave motion can then be uniquely described
by the z-component of the electric field F. [17]. We write E-
as a function of (2-D) space T and the free-space wavenumber
k = w\/€ojto and suppress a time dependence of et B
then satisfies

(V24 K E. (x. k) = =KV E.(x, k) (1)

where V? = 92 + 92 and the scattering potential V" is related
to the permittivity and, hence, the refractive index n(r. y) by

o = Lt

=n?(r, y) -1 (2)

-1

and is assumed to be nonzero only in the region T_.

We also find it desirable to partition F. into its inci-
dent, B! (x. k). and scattered, E7(x, k), components so that
E.(x. k) = E{x. k) + Ei(x, k). We take the incident

wavefield to be planar and write it as
Fl(x, k)= 6’””“‘ (3)

where  implies a unit vector and k is the direction of
propagation. We take as our scattering data, measurements of
E2(x. k) in the far field which we denote as E!f*(x. kk)
and define by

eI RIx
\/ 8mh|x| .

We include the vector k in the argument of £7/5(x. kk) to
indicate that the incident field (3) with propagation direction
k was invoked to generate it.

The essence of our microwave imaging problem can now
be simply stated. We wish to estimate the retractive index dis-
tribution n(x) within Y _ from measurements of the far field
E115(x. hk). We perform this by developing enhancements
to diffraction tomography.

EX(%. k) = KI5 (% kk) (4)

III. ENHANCING DIFFRACTION TOMOGRAPHY

Our enhancement to diffraction tomography can be obtained
by appealing to the derivation invoked for the Born approxi-
mation. Consequently, we begin by considering the expression
for E¥(x. k) in the far field. By invoking the far-field form
of the Green's function [17, p. 611]

R (x]=x1 %)

g(x. x1) = T 3)
the far field can be written as
Bk k) = [ R ) = 1B G, )
'- e';kx'xl dY(xy) (6)

where integration is with respect to x; over the region Y _.
By now multiplying and dividing the integrand of (6) by the

planar incident field (3) this equation can be manipulated into
the form

BT (%, kk):/ K22 (x1) = 1]B-(x1, h)

.ejl\'k X‘éj—jka]Hka X1 dT(Xl) (7)
which can be further rewritten as

Bl (% hk) = / k [n?(x1) — 1]D(x1. kKk)

JY
. C“J}\(k—x) X1 (]Y(Xl) (8)
where
D(x. k. k) = E;(X, k;)(,ﬂx‘l:cx 9)

We here term D(x, k. k) as the distortion function. For
situations in which the Born approximation is valid, the
distortion function is approximately unity for all incident
directions and so (8) can be written as a Fourier transform
and the standard results of diffraction tomography will apply
[10]. That 1s

EfT(x, kk) = B2 Fo{n?(x1) — 1]}(K) (10)
where k' = A‘(I{ — %) and the 2-D Fourier transform F, is
defined by

mlew = [ [ pwerasan

However, when the distortion function cannot be approx-
imated by unity then the Born approximation will not be
valid and the resulting reconstruction will not be accurate.
In this situation, the distortion function can be thought of as
accounting for the difference between the planar incident field
and the actual field in T_. Consequently, in order to improve
upon the Born approximation it is necessary to try and remove
the effect of the distortion function. The difficulty with this,
however, is that the distortion function is different for each k
and L preventing a straighttorward Fourier relationship to be
written as for the Born approximation. Here, our approach to
overcome this is to first approximately estimate the distortion
function for each k and A and then later remove its effect.

To proceed with this approach at enhancing the Born
approximation it is useful to define the following Fourier
transforms with respect to x

O(u) = k> Fo{[n*(x) — 1]} (u)
Dy(u) = Fo[D(x. k, k)](u).

(12)
(13)

The subscript k has been included to stress that the transform
pairs are with respect to x only and all other variables have
been taken to be independent so that Dk(u) is a 2-D function
of u which is different for each k.
By now taking the convolution of the terms in (12) and
(13) we get
Fx(u) = O(u) & Dy(u) (14)

where ¢ is used to denote convolution. By making compar-
isons with (8) and realizing that convolution m the Fourier
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Fig. 1. Locus in Fourier space corresponding to the observable spectrum
O(u) of the object for (a) the conventional Born approximation and (b) the
enhanced approximation (24).

domain becomes multiplication in the object domain it can be
deduced that for fixed k equations (8) and (14) are equivalent
when u = k(k — %). That is

EfTs(%, kk) = Fi(u) when u=kk-%). (15
Hence, we can only observe F‘k(u) for points on the locus
u = k(k — %). This illustrates the difficulty of our problem
since if we knew Fk(u) for all u then we could use a blind
deconvolution algorithm to estimate the distortion function
and remove its effect and, hence, recover the object O(u).
However. because we can only observe Fk(u) on a finite
locus of points we must invoke another means of estimating
the distortion function.

Estimating the distortion function can be achieved by under-
standing it further. This is achieved by representing E.(x., k)
as a WKB high frequency approximation [17]. The distortion
function then becomes

D(x, k, IA{) = ¢ IMS) -k x] (16)
where we have invoked the WKB approximation E.(x, k) =
e~7#S(*) in which S(x) denotes the wavefronts of the field
which depend on k. So now the problem of estimating
the distortion function has been reduced to estimating the
wavefronts S(x).

To simplify matters we choose to represent the difference
[S(x) — k - x] in (16) as a 2-D Taylor series expansion about
the origin so that

S(x) — k- X1 = ago + (@107 + a01¥)

+ -217 (2%az0 + 2zyair + ag2y®) + -+ (A7)
where the constants @, for m, n € {0, 1, .-+, } represent
the partial derivatives of [S(x) —k-x] about the origin with the
m and n, respectively, referring to the number of derivatives
with respect to z and y. It should also be noted that the a,,,
are functions of k. When the Bomn approximation is valid
the difference [S(x) ~ k - x] will be small and, hence, the
coefficients will also be all small. However, when the Born
approximation is not valid and the coefficients are large some
means of estimating them is required so their effect can be
removed.

By substituting (17) into (16) and invoking some well
known Fourier transform pairs [18] we can then write the

Fourier transform (12) of the distortion function as

[)k(u) = eJk“"Ué(u + kaig, v + kao1)

O . 'IL2 + uv + 172
. X — e —
P bao  2b11  bo2

® Fole )(u) (18)

where the 2-D delta function is denoted by 6(-, -} and the exact
relation of the coefficients bog, b1y, and bgs to the agg, ay1,
and ag2 is not important here and not listed.

We can then substitute (18) into (14) to obtain

F‘k(u) = O(u) ® [Cjkaoué(u + kaig, v + k(l()l)]

L o u? L v?
- X [ _—
© PlY byo 2611 bo2

© Falet)(u)

(19)

where it should be noted again that EJf3(x, kl;) = Fy(u)
when u = k(l; — %) and that the a,,, will be different for
each k.

The expression (19) forms the essence of our improve-
ments to the Born approximation. Its significance can be
best understood by considering its effect on the observable
(observable from E77 (%, kk)) part of the spectrum of O(u)
and by making comparisons with the conventional Born ap-
proximation. For the Born approximation the observable part
of the spectrum of O(u) corresponds to the locus of points
described by the extremity of the vector u = k(k — %) and
is a circle centered at kk and whose radius is k [4]. This
is illustrated in Fig. 1(a). When we take into account the
distortion function, the observable part of the spectrum of
O(u) is somewhat altered. To understand how it is altered
it is useful to consider the effects of the individual a,,,
in turn. The first coefficient ago simply adds an additional
phase term e’®%° to the spectrum. The second set of terms
in our expansion (those corresponding to a;o and aq; in the
delta function) translate the observable part the spectrum of
O(u) by kaig and kag; in the w and v coordinate directions,
respectively, [by —kayo and —kagr with respect to the origin
of Fk(u)]. If we let a = (a1, ao1)” then the corresponding
locus of points is described by the extremity of the vector
u = k(k +a — %) and is a circle centered at k(k 4 a) whose
radius is k. This is illustrated in Fig. 1(b). The effect of the
distortion function can clearly be seen as a translation of the
observable part of the spectrum which will be different for each
k. The third set of terms in our expansion distorts the value of
the spectrum on the locus by a convolution with a Gaussian-
like function. If the coefficients are small, then the Gaussian
will be narrow, causing minor distortion. The remaining higher
order terms in the series will also cause distortion; however,
we will not consider their detailed effects further other than to
say they will be small if their corresponding coefficients are
also small. It can also be seen that the Born approximation is a
special example of (19) when all the coefficients a,,,, are taken
to be zero and, hence, there is no translation or phase shift.

Clearly, if we could estimate some of the a,,, from the
measurement data then we could correct for the distortion
connected with the additional phase and translations. In this
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Fig 2. Area corresponding to the observable part of the spectrum O(u)
of the object under the conventional and enhanced Born approximations
when either k or k are varied. For the coqventlonal Born approximation,
the coverage of the spectrum 15 as (a) when k 1s varied for fixed & and 1s as
(b) when A is varied for fixed k. For the enhanced Born approximation the
coverage of the spectrum is as (¢) when k is varied for fixed & and is as (d)
when & 1s varied for fixed k The effect of the translation 1 clearly visible
for the enhanced approximation

way, we could provide enhancements to the Born approxi-
mation and, hence, diffraction tomography. Before proceeding
with attempting to estimate the o, ,. which is discussed in the
next section, it is useful to discuss two further aspects of the
interpretation of the distortion function.

The first result concerns how the spectrum of O(u) can be
collected over 2-D space so a 2-D inverse Fourier transform
can be invoked to reconstruct the object O(u) and, hence, the
refractive index n(x). Under the conventional Born approxi-
mation this is generally pertormed by collecting measurements
over a range of propagation directions k, so that the locus in
Fig. 1(a) is rotated about the origin. The result is shown in
Fig. 2(a). An alternative method sometimes used is to utilize a
range of % but fixed k. The coverage thereby achieved is shown
in Fig. 2(b). However, under our interpretation of the distortion
function this conventional interpretation is somewhat altered.
The result of incorporating the effect of the distortion function
for the two situations just described are given in Fig. 2(c¢) and
(d). It should be clear the translation caused by the distortion
function has a significant effect on the coverage achieved and
is different from the conventional interpretation.

The second result worth discussing is deducing the ap-
proximate physical meaning of the coefficients «.,,. These
depend on the wavefronts S(x) and so to gain insight, we
approximate the wavefronts by assuming that they do not
refract significantly and travel along the same path as the
incident wavefield. The electrical path length of the wavefronts
is then simply the integral of the refractive index along straight
paths. For planar incident waves propagating along the z-axis

S{x) can then be approximately written as
zo

S(rg. y) = / n{x. y)dr. (20)

Pials o
The coefficients can then be estimated by taking the derivatives
of the difference (17). For example it the object is a circular
cylinder with radius 74 and center at the origin then agy can
be approximated by

ago = ro[n(0, 0) — 1]. 2n

The coefficients 19 and wg; have a similar physical meaning
based on (20). By taking derivatives at the origin we can also
approximately define a1 and ag; as

ayp &= [n(0, 0) — 1]
and
g ~ 0. (22)

Thus it is clear the coefficients depend intimately on the
object. However, in our imaging problem we must estimate
the unapproximated coefficients from the measurement data
alone.

IV. ESTIMATING THE DISTORTION FUNCTION

To alleviate the estimation process, we introduce various
levels of enhancements by considering only a limited number
of terms in the Taylor series (17). In particular we introduce
three levels of enhancements and these are written as

ka 00

F(u) =O(u)
F(u) =0(u) & [e?F0§(u + kayg, v+ kagy)]
F(u) = O(u) @ [eﬂ”““"é('za + ka1g, v + kagy)]

u? u p2
s J L 25
u {exp {j <b20 * 2b11 * bogﬂ} (25)

where it should be noted again that Effs(%, kk) = Fi(u)
when u = k(k — %) and that the a,,, will be different for
each k. Clearly, each of the equations takes into account an
additional term in the distortion function. We refer to the
various levels of enhancement represented by (23)—(25) as,
respectively, enhancements one, two. and three. In Sections
IV-A-IV-C we describe methods for estimating the terms in
the distortion function for each of the enhancements.

(u)e’

(23)
(24)

A. Estimation for Enhancement One

Enhancement one is written in (23). Mathematically, it
corresponds to when only the agg term is assumed significant
and the remaining a,,, assumed negligible. Consequently,
only agg need be estimated.

The technique adopted here for estimating agg is based upon
calculating Ef/s(%. kk) for two wavenumbers. k; and ks.
say. From our earlier discussion, we know that this gives us
spectral information about ¢7%%90 [n2(x) — 1] on two circles of
radius &y and k,. Because we are also assuming that only agg is
significant, we know these two circles intersect at the origin of
Fourier space since a1g and ag; are taken as zero. The point
of intersection occurs when X = l;, the forward-scattering



MURCH AND CHAN. IMPROVING MICROWAVE IMAGING BY ENHANCING DIFFRACTION TOMOGRAPHY 383

Vv

Intersection ~ __

Fig. 3. Ilustration of our technique for estimating a1y and ag; for the
enhanced Born approximation.

direction. We also know at this point of intersection that the
value of the far field at &, and k5 differs from the spectrum of
O(u) by, respectively, the phase factors e/*17%0 and es*200, A
straightforward estimate of @y can consequently be obtained
from the difference between the phases of EZ7¢(%, kk) and
EJ75(%, kok) in the forward direction % = k. This may be
expressed as

LESTS (%, kok) — LB (%, kik)
ks — ki

= (26)

where x is taken in the forward direction k, and / denotes
the phase of.

Although this process is reasonably straightforward, recon-
struction by simply altering the phase will likely produce
improvements to the Born approximation.

B. Estimation for Enhancement Two

Enhancement two is written in (24). It takes into account
an additional term in the distorting function as compared to
enhancement one. Consequently, agg, @19, and «g; need to be
estimated.

The technique adopted for estimating the coefficients is to
again calculate E//*(%, kk) for two wavenumbers, k; and
ko say. This case. however, gives us spectral information
about e/#%0O(u) on two circles of radius k; and ko, which
not only have different diameters but are also translated
by the coefficients a19 and ag1. as shown in Fig. 3. This
implies that the intersection point of the circles is now shifted
away from the origin. At this intersection point the value of
Ef1#(x, kk)/k? for k; and k- will equate apart from the phase
factors /%1900 and el*200,

Consequently, a straightforward method to estimate the
translation introduced by agy and aqg is to find a point where
|ES7>(x, kik)/kZ| and |ES7(x, kok)/kZ| equate. At this
point we can then use (26) to determine agg. Clearly, in
practice there might be several points where the field values
equate so to eliminate this possibility we invoke measurements
from more than just two values of k& (usually we utilize five
different k).

To formalize this procedure we write a cost function as

C(aoo, a10, (1,01) = Z Hejk”uooEffs()A{, kpk)/kg

p#q

— MO B (%, k)RS @)
where p and ¢ run over the number of measurements taken
and x is taken at the point of intersection. We then deter-
mine the a1g and ag; that minimizes this cost function. A
straightforward method for finding the minimum is to invoke
an exhaustive search. The computational intensive nature of
this can be reduced by realizing that the vector made up as
(a10, ao1)T will approximately point in the direction of k and
so we can restrict our search area appropriately. The search
procedure essentially takes three steps and these are: 1) choose
a particular a;( and ay; and find the corresponding intersection
points; 2) calculate agq at this intersection point by utilizing
(26) and calculate (27); and 3) choose the next aig and aq
and repeat the above steps until a global minimum of the cost
function is found.

C. Estimation for Enhancement Three

Estimating the third and further terms in the series is
in principle different from determining the first and second
terms. This is because the third and further terms in the
distortion function have effects over a finite area in the Fourier
domain. Consequently, to estimate them one needs to know
the spectrum also over a finite area. However, because the
measurement data only allows us to observe the spectrum
on a locus of points described by a circle this is difficult.
Consequently, we have been unable to suggest a practical
method for performing this. A_possible avenue, however,
would be to utilize a continuum of £ and try and estimate
the effects of the third term from these.

V. SIMULATION RESULTS

In this section, simulation results of reconstructing or imag-
ing objects under enhancement one and two are described so
that the performance and significance of the enhancements
can be demonstrated.

A necessary part of simulating reconstruction algorithms is
obtaining suitable measurement data upon which the recon-
struction algorithm will operate. In general, this is nontrivial
and so we restrict our objects to various configurations of
concentric and nonoverlapping eccentric cylinders in which
each cylinder has an arbitrary constant refractive index which
is real and nonnegative. The measurement data from these ob-
jects is calculated by the exact formulation of mode-matching
and addition theorems (to effect mode-matching on eccentric
cylinders) [17]. The data so obtained is completely indepen-
dent of the inversion method and consequently, will form an
unbiased test for our enhancements. To make some quantitative
comments about our simulations, we also find it useful to
define L to be the largest linear dimension, in wavelengths,
of the particular object under consideration.

In the simulations of enhancement one, we utilize measure-
ments from two wavenumbers whose ratio is kq/ky = 1.1.
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Fig. 4. Simulation results of reconstruction of an object consisting of a sigle
cylinder of radius 1 = 3A and refractive index ny = 1.05. The results are
for (a) Born approximation, (b) Rytov approxamation, (¢) enhancement one,
and (d) enhancement two. The sohd and broken lines, respectively, represent
the original and reconstructed object profiles

The value of this ratio has an effect on the noise sensitivity of
the reconstruction as discussed at the end of Section V-A.

In the simulations for enhancement two, we use measure-
ments from five wavenumbers, to estimate the coefficients
0oy, (1o. and agq, such that the ratio of the maximum to
minimum wavenumber is about five; however, we only use
the measurement data from the largest wavenumber for the
reconstruction itself. Another important consideration under
enhancement two is the effect of data missing at the center of
Fourier space as shown in Fig. 2(c). In general, the result of
this hole creates a dc offset occurring in the reconstruction.
This artifact is annoying in the reconstruction so is best
removed. It can be removed by interpolating over the missing
low frequency area or by utilizing measurement data from the
lowest wavenumber for filling in the missing data in the “hole.”

After extracting the various coetficients reconstruction was
then performed by backpropagation [19].

A. Circularly Symmetric Objects

The first set of reconstruction results are for circularly
symmetric objects which in our case consist of either single
cylinders or concentric cylinders. For circularly symmetric
objects. the coefficients «,,, are the same for all k.

Altogether we provide five numerical examples of recon-
structions for circular symmetric objects. For each simulation
four results are provided and these are reconstruction by:
a) the conventional Born approximation as defined in (8)
when D(x. k, f{) = 1; b) the Rytov approximation using the
implementation given in [4]; ¢) enhancement one as specified
in (23); and d) enhancement two as specified in (24). Only
the vertical cross section along the x-axis of the cylindrical
objects with units of wavelength are illustrated to provide
easier comparisons between various results. However, it must
not be forgotten that they are in fact circular objects. The first

Fig. 5  Simulation results of reconstruction of an object consisting of a single
cylinder of radius 11 = 3\ and refractive index ny = 1 10 The results are
for (a) Born approximmation, (b) Rytov approxumation, (c) enhancement one,
and (d) enhancement two The solid and broken lines. respectively, represent
the oniginal and reconstructed object profiles

two examples are single cylinders while the other examples
consist of concentric cylinders of various refractive indices.

The results of reconstructing the refractive index n(x)
for the two single cylinder objects are shown in Figs. 4
and 5. In each figure it can be observed that both of our
enhancements perform better than the conventional Born and
Rytov approximations and it is only in Fig. 4 for which
the conventional Born and Rytov approximations perform
reasonably. For the Rytov approximation we should also note
that distortion occurs outside the object areas in both these
examples. It can also be observed that enhancement two
performs the best overall.

The remaining three circular symmetric objects consist
of several concentric cylinders of various refractive index.
The results are shown in Figs. 6-8. The conventional Born
and Rytov approximations perform poorly in all these ex-
amples. Again, however, our enhancements perform well
and enhancement two performs the best. It should be noted
that the example in Fig. 8 has been proposed by other
researchers [20] as a canonical object for which inverse
algorithms can be compared. Both our enhancements are a
gignificant improvement over the conventional Born and Rytov
approximations for this example which is a good result in
itself.

To better understand our enhancements we have also tab-
ulated the estimated values for ugg. a1gp and ag; in Table
I. Alongside these values, we have also listed the values
obtained by utilizing our approximate formulation as given
in (20)-(22). In the examples, enhancement two agrees well
with our approximate values.

Results of reconstruction with added noise contamination
are listed in Table II. In our simulations, the contamination
was modeled as being additive. The level of the contamination



MURCH AND CHAN' IMPROVING MICROWAVE IMAGING BY ENHANCING DIFFRACTION TOMOGRAPHY 385

1.06

1.06

1.04 1.04

£1.02 £1.02

1.06
1.04
€1.02
i
-10 X?}\.) 10 -10 X%») 10
() (d)

Fig. 6. Simulation results of reconstruction of an object consisting of
concentric cylinders with radii r1 = 3A. ro = 6A, and refractive indices
105, na = 1.025. respectively. The results are for (a) Born
approximation, (b) Rytov approximation, (c) enhancement one, and (d)
enhancement two. The solid and broken lines, respectively, represent the
original and reconstructed object profiles.
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Fig. 7. Simulation results of reconstruction of an object consisting of
concentric cylinders with radii 1 = 3A, r2 = 6\ and refractive indices

n1 = 1.1, na = 1.05, respectively. The results are for (a) Born approxima-
tion, (b) Rytov approximation, (c) enhancement one, and (d) enhancement
two. The solid and broken lines, respectively, represent the original and
reconstructed object profiles.

is specified in decibels (dB) by
c2(x)
E{f(x)

where the bar and 2 superscript indicate signal power. In our
case the data is complex so ¢(x) is also complex, having
both a random magnitude (uniformly distributed in the range
0 to b, where b is a positive constant) and a random phase
uniformly distributed in the range —7 to 7. The normalized
mean square error (NMSE) between the original reconstruction

SNR = 101log;, (28)

1.04

=1.02

-10 0 10 -10 0 10
XN X3
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Fig. 8. Simulation results of reconstruction of an object consisting of
concentric cylinders with radii r1 = 2\, 12 = 4A, r3 = 6, and refractive
indices ny = 1010, ng = 1.039. ng = 1.025, respectively (see [20]).
The results are for (a) Born approximation, (b) Rytov approximation, (c)
enhancement one, and (d) enhancement two. The solid and broken lines,
respectively, represent the original and reconstructed object profiles.

n{x) without noise and the degraded reconstruction 7(x) with

noise is defined by

Var [n(x) — 7a(x)]
Var [n(x)]

NMSE[n(x), n(x)] = 100 x (29)
where Var is variance.

In the results of the reconstruction with added noise con-
tamination (Table II) some interesting points can be raised.
For enhancement one the value of the ratio kj/ks plays an
important role in the noise sensitivity. In our simulations when
k1/ks is 1.1 noise contamination in excess of 20 dB causes
significant increases in degradation. However, below this level,
the sensitivity to noise is similar to the conventional Born
approximation. This threshold effect is because ag is given by
(26) where it is clear that the smaller the difference k1 — ko
the greater will be the sensitivity to noise. It is found that
if an error greater than 10% occurs in the estimation of ag
then significant increases in degradation in the reconstruction
occurs and for k; /ke = 1.1 this occurs when the SNR > 20
dB. However, this threshold can be increased by increasing
the ratio ki/k2. For enhancement two, noise sensitivity is
also generally higher than that for the conventional Born
approximation. The reason for this is that for enhancement
two, the estimation of the additional coefficients a1 and
ao1 Introduces additional uncertainty. However, this is offset
by utilizing data from five different k thereby causing some
reduction in noise sensitivity due to averaging.

B. Asymmetric Objects

To further demonstrate our enhancements, reconstruction
of an asymmetrical object is provided in this section. For
asymmetric objects, the coefficients a,,, are different for
different k. The asymmetric object we trial consists of three
eccentric cylinders. The radii of the cylinders which make up
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Fig. 9. Reconstruction of the asymmetric object defined mn (30): (a) and
(b) are, respectively, the original and conventional Born approximation; (c)
and (d) are, respectively, reconstruction by invoking enhancement one and
enhancement two.

the objects are all equal to 3A. The exact configuration of the
object is specified as

Object: ny =1.02. 7o =3X, center =(—4A, —4.51)
na =1.05. rp =3\ center = (—4A, 4.51)
ny =1.08, 7o =3\ center = (4.5, 0). (30)

The results of reconstructing this object are shown in Fig.
9. Both enhancement one and two perform better than the
conventional Born approximation. It is found that enhancement
two gives a good estimation of the height (refractive index) of
the cylinders in all cases. However, the profile of the cylinders
are distorted. Results from other asymmetrical objects of this
type provide similar findings.

VI. DISCUSSION

From our simulation results. 1t has been demonstrated that
both enhancement one and two provide significant improve-
ments in the reconstruction quality of the conventional Born
and Rytov approximations. Some further questions remain to
be answered concerning the range of the validity of these
enhancements., how the enhancements relate to the Rytov ap-
proximation and what additional computational requirements
do the enhancements require.

A. Approximation Validity

For the conventional Born approximation we know the
range of validity to be approximately specified as (n —
1)L < bA where b ~ 0.1 — 0.5 [4]. To deduce a similar
validity condition for our enhancements we must consider
the underlying approximations invoked. In our enhancements
essentially two approximations have been invoked.

The first approximation utilized is that of the WKB ap-
proximation (16) as a representation of the total field. Such

an approximation is predicated upon refraction predominating
over reflection which requires that spatial variations of the
refractive index n be smail. To get an objective measure of
this we may assume that the strength of the reflections must
be smaller than the transmitted wave for the approximation to
be valid corresponding to a reflection ratio of less than one
half. If we assume that the discontinuities are along planar
interfaces the reflection coefficient can be given as

b= ny — na G1)
ni -+ 1o

where ri; and ng are the refractive indices either side of the
interface. By ensuring p < 0.5 in (31) gives us a validity
condition on our approximation as 0.75 < ni/ng < 1.5.
Results of investigating this validity condition have been
confirmed by previous investigation which suggest that it is
an upper bound for the validity of (16) in [21].

The second approximation is introduced in (17) and relates
to how well the various terms in our approximation can model
the distortion function. The validity of this approximation is
likely to be dependent on the shape and distribution of the
refractive index. For enhancement one, this is likely to be
similar to the conventional Born approximation except that
the additional constant phase term will increase validity by
up to a factor of two such that (n — 1)L < 2bA. This 1s
because the phase reference is at the center of the object rather
than the edge as for the conventional Born approximation.
This represents an increase of two for the validity of the
conventional Born approximation. For enhancement two, how-
ever, the validity is even greater than this since the distortion
function is likely to be well modeled if the wavefronts vary
linearly with x.

Conclusions of this nature are supported by the simulation
results. Enhancement one is valid for a wider class of objects
that the conventional Born approximation but breaks down
when (n — 1)L > A as in Fig. 7. Under enhancement two
it can be observed that it performs well for all the circularly
symmetric objects. However., when significant deviations from
a simple refractive index distribution occur (as in Fig. 9).
degradation in the reconstruction increases.

B. Relation to the Rytov Approximation

Although our enhancements have been obtained from con-
sideration of the Born approximation, it is also worthwhile to
consider why it outperforms the Rytov approximation and how
it may relate to the Rytov approximation [4].

To understand why our enhancements perform better than
the Rytov approximation. we need to consider the approxima-
tion in more detail. In some ways our enhancements can be
likened to the Rytov approximation since we are devising a
better approximation to F. the total field by including a linear
phase term. Although this linear phase term can be likened to
the Rytov approximation which utilizes an arbitrary function to
represent the phase the Rytov approximation neglects the term

Bl o, {Ez(xﬂkq

B (x. k) El(x.k) (32)

Vln{
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TABLE I
A COMPARISON OF THE COEFFICIENTS OBTAINED FROM THE SIMULATION RESULTS OF OUR ENHANCEMENTS
TO THOSE FROM THE APPROXIMATE THEORY (20)

Numerical | Estimated Coefficients Estvimated‘ coefficients | Estimated Coefficients
Example from (20) from enhancement one | from enhancement two
aoo |((110,a01)T| ago apo |(am, Gul)Tl
figure 4 0.942 0.050 0.784 0.834 0.052
figure 5 1.885 0.100 1.426 1.690 0.099
figure 6 1.414 0.031 0.968 1.437 0.036
figure 7 1.414 0.044 1.306 1.506 0031
figure 8 0.930 0.028 0.885 1.049 0.026
TABLE II

SIMULATION RESULTS OF NMSE FOR WHEN NOISE CONTAMINATION WITH SNR OF 20 anD 25 dB
ARE ADDED TO THE DATA. THE DEFINITIONS OF SNR AND NMSE ARE PROVIDED IN SECTION V-A

Numerical Example | Born Approximation | Enhancement One | Enhancement Two
20 dB 25 dB 20 dB 25 dB 20 dB 25 dB
figure 4 1.43 0.88 1.84 0.75 2.7 1.01
figure 5 1.97 1.35 5.8 2.49 5.2 2.1
figure 6 4.19 1.65 6.14 2.25 6.01 2.4
figure 7 1.73 0.99 14.0 4.15 7.8 3.4
figure 8 5.49 2.18 3.63 1.25 4.8 2.01

which causes the Rytov approximation to perform worse than
the Born approximation for objects with large deviations in
refractive index [4]. In our enhanced approximations, this
ferm is not neglected and thus our enhanced approximation
performs better for objects with larger deviations in refractive
index than the Rytov approximation.

C. Computational Considerations

Our enhancements show that both enhancement one and two
offer improvements over the Born and Rytov approximations.
These improvements, however, must be weighed against the
computational costs.

The additional computational cost for implementing en-
hancement one is low. This is because we only require
additional computation for (26), which is a straightforward
calculation.

The additional computation cost for enhancement two is
higher, however, because we have to perform an optimization
(27) over a total of five wavenumbers. This requires an
increase in computational time by approximately a factor of

10-15 when measurements from five wavenumbers are used.
However, the computational competitiveness of this method
is still good in comparison to techniques based on exact
descriptions of wave motion.

The other significant increase in load will be acquiring
data from a range of frequencies. For enhancement one, this
data is only required at one other frequency differing by
approximately 10% from the first measurement. For enhance-
ment two, however, measurements from five wavenumbers
over a broadband are required. For measurement systems
that use wideband pulses to probe the object, this may not
be a problem since the wideband information in principle
is readily available. However. for CW measurement systems
additional scans of the object will be required at the different
wavenumbers.

VII. CONCLUSION

An important contribution of the research presented here
is the interpretation of the effects of refractive media on the
Born approximation. In particular we demonstrate that it can
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be likened to additional phase and translation of the observed
object spectrum that is different for each angle of incidence k.

We further show how this phase and translation can be
estimated from the measurement data to improve on the
quality of the reconstruction. The concrete manifestation of
this approach is an algorithm that is based on the tech-
nigues utilized in conventional diffraction tomography. The
numerical results generated by this algorithm suggest that in
general it can be expected to provide reconstructions that
are more accurate than those generated by the conventional
Born approximation. Considerations of the validity of the
approximation for enhancement one indicate that it is an
improvement over the Born approximation by a factor of two.
For enhancement two, the range of validity is even larger than
this. Moreover, we also show that the enhancements perform
better than the Rytov approximation for objects with large
deviations in refractive index.

We hope that through an approach of this kind improved
reconstruction quality is achievable without the increased
complexity of a full-wave description of the imaging or inverse
scattering problem, ‘
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