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Abstract— In this paper, a technique for enhancing the re-
construction quality of diffraction tomography for microwave
imaging is presented. The technique invokes the WKB approxi-
mation in conjunction with utilizing measurement data at more
than one frequency to overcome some of the limitations of diffrac-
tion tomography. The resulting formulation has a mathematical
interpretation which leads to some interesting insights into the
limitations of diffraction tomography, Numerical implementation
of the technique is also described and actual simulation results
using this implementation for a variety of two-dimensional (2-D)
objects are provided. These show that indeed significant improve-
ments over conventional diffraction tomography are possible with
our enhanced technique.

I. INTRODUCTION

M ICROWAVE imaging has potentially many important
technological applications. These include medical

imaging [1], nondestructive testing [2], geophysics [3],
and robotic vision [2]. The advantages microwave imaging
offers over more conventional imaging techniques are
numerous. They include the relatively low health hazard

of nonionizing low power microwaves, its ability to image
properties such as permittivity and conductivity, and the
likely cost competitiveness of the imaging equipment.
Consequently microwave imaging has attracted much interest
from researchers in recent times [1]-[9].

The difficulty with microwave imaging, however, is the
associated problem with performing object reconstruction.
Because microwaves experience significant attenuation, scat-
tering, and diffraction standard tomographic reconstruction
schemes are not readily applicable and are of only limited
usefulness. In an attempt to overcome this problem, two ap-
proaches to microwave imaging have been investigated in the
recent past [10]. The first is based on diffraction tomography
under either the Born or Rytov approximations. The advantage
of this approach is that it is comparatively straightforward to
apply and usually computationally efficient. The disadvantage,
however, is that due to the underlying approximations involved
the type of objects imaged accurately are usually limited [4].
The second approach utilizes some form of exact description
of wave motion to formulate reconstruction as a nonlinear
equation which is solved numerically. The advantage is that
in principle any object type can be imaged accurately since
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wave motion is described exactly [11]. However, in practice
the computational overheads of this approach are usually so
large that restrictions on either the object size or type of object
must be enforced [11].

In this paper, an attempt to fill the middle ground be-
tween these approaches is performed, We describe a method
that utilizes the comparatively straightforward formulation of

diffraction tomography while incorporating some of the more
intricate wave phenomena found in the approaches based
on exact descriptions of the underlying wave motion. The
inspiration for our technique is that it invokes concepts from
the WKB high frequency approximation in conjunction with
utilizing scattering measurements at more than one frequency.
Not only do the simulation results reveal that significant
improvements are possible in image quality, but the resulting
interpretation of diffraction tomography by our method also
illuminates some interesting new concepts.

Alternative solutions have been devised in an attempt to

overcome limitations associated with diffraction tomography.
However, these methods either require a priori information
about the object [12], [13], or when no a priori information is
required, the few numerical results so far presented do not
suggest that the improvements are likely to be spectacular
[14]-[16].

In Section II, necessary preliminaries are introduced to
define our microwave imaging problem. The theory of our
enhancements to diffraction tomography are formally intro-
duced in Section III where the interpretation of our formulation
is given. The methods for implementing and reconstructing
objects under our solution are then given in Section IV.
Simulation results are presented in Section V and these results
are compared to what are obtained when the conventional
Born approximation is invoked. Finally, in Section VI and
Section VII discussions and conclusions are given to examine
the validity and significance of our technique.

II. PRELIMINARIES

Arbitrarily chosen (but considered fixed, once chosen)
Cartesian coordinates z, y, and z are set up in three-
dimensional (3-D) space. Scattering objects with cylindrical
symmetry in the z-direction are considered so that our objects
can be considered two-dimensional (2-D) with only variations
in the 2-D zy-plane. We denote the 2-D xy-plane by T and
partition it as ‘Y = T+ U T– so that T– represents the
region of 2-D space in which the scattering object exists. The
scattering, object is assumed to have permittivity E(Z, y) and
permeability p. and to be surrounded by free space (c., Vo).
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We consider
the ; -dn-ection
electromagnetic

electromagnetic wave motion polarized in
with free-space angular frequency u. The
wave motion can then be uniquely described

by the z-component of the electric field E, [171. We write E,

as a function of (2-D) space T and the free-space wavenumber
k = ti = and suppress a time dependence of c 14+. E,
then s~tisfies

(P + L’)l?. (x. L’) == -k’I’E, (x. k’) (1)

where V2 = d: + d? and the scattering potential 1’ is related
to the permlttivity and, hence, the refractive index rr( r:. U) by

and is assumed to be nonzero only in the region T_.
We also tind it desirable to partition E, into Its inci-

dent, E: (x. L), and scattered, E’: (x, k), components so that
E,(x. k) = E:(x, k) + E’:(x. k). We take the incident
wavefield to be planar and write it as

E:(,x, k) = c-JAkx (3)

where implles a unit vector and k is the direction of
propagation. We take as our scattering data, measurements of
E; (x, k) in the far field which we denote as E: f’ (x, kk)
and define by

~–,,~qxl

E;(X. k) = E:’f(x. kk)
m“

(4)

We include the vector k in the argument of E~f5 (x. kk) to
indicate that the incident field (3) with propagation direction
k was invoked to generate it.

The essence of our microwave imaging problem can now
be simply stated. We wish to estimate the refractive index dis-
tribution n(x) within ‘Y_ from measurements of the far field

E~f’ (x. ilk). We perform this by developing enhancements
to diffraction tomography.

III. ENHANCING DIFFRACTION TOMOGRAPHY

Our enhancement to diffraction tomography can be obtained
by appealing to the derivation invoked for the Born approxim-
ation. Consequently, we begin by considering the expression
for E: (x. A) in the far field. By invoking the far-field form
of the Green’s function [17, p. 611]

~–jk(lx+xl x)

‘(’x”“)“ -
(5)

the far field can be written as

. ~,J~x’xl ~y(xl) (6)

where integration is with respect to x1 over the region L.
By now multiplying and dividing the integrand of (6) by the

planar incident field (3) this equation can be manipulated into
the form

E{tq(x, ~k) ~ 1 A~[f/~(xl) – I] E,(xl, A)
T–

~Jkk x,t;–jkkx,ti~h XI (~~(x~)

which can be further rewritten as

[
E! f”(x, kk) = , ~__ ,kz [77,2(XI) – l]~(XI, k’k)

. c –jk(k–x) x, ~j~(xl)

where

D(x k:, k) = E.(x, i:)e]kkx

We here term D(x. k. k) as the distortion function

(7)

(8)

(9)

For

situations in which the Born approximation is valid. the
distortion function is approximately unity for all incident
directions and so (8) can be written as a Fourier transform
and the standard results of diffraction tomography wdl apply
[10]. That M

Eff’(x, k )– -k – k2~,{[7/(XI) – l]}(k’) (10).

where k’ = k( k – x ) and the 2-D Fourier transform Y2 is
defined by

II

.,x .W

Y,[,/’(x)](u) =
-m -CXJf(x)e-’ux( ’x” ’11)

However, when the distortion function cannot be approx-
imated by unity then the Born approximation will not be

valid and the resulting reconstruction will not be accurate.
In this situation, the distortion function can be thought of as
accounting for the difference between the planar incident field
and the actual field in T_. Consequently, in order to improve
upon the Born approximation it is necessary to try and remove
the effect of the distortion function. The difficulty with this,
however, is that the distortion function is different for each k
and k preventing a straightforward Fourier relationship to be
written as for the Born approximation. Here, our approach to
overcome this is to first approximately estimate the distortion
function for each k and A and then later remove its effect.

To proceed with this approach at enhancing the Born
approximation it is useful to define the following Fourier
transforms with respect to x

6(U) = k~r2{[rL~(x) – l]}(u) (12)

&(U) =fz[~(X, k, k)](u). (13)

The subscript k has been included to stress that the transform
pairs are with respect to x only and all other variables have
been taken to be independent so that &(u) is a 2-D function
of u which is different for each k.

By now taking the convolution of the terms in (12) and
(13) we get

~k(u) = O(U) ;) tik(u) (14)

where E is used to denote convolution. By making compar-
isons with (8) and realizing that convolution In the Fourier
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Fig. 1. Locus in Fourier space corresponding to the observable spectrum
0(u) of the object for (a) the conventional Born approximation and (b) the
enhanced approximation (24).

domain becomes multiplication in the object domain it can be

deduced that for fixed k equations (8) and (14) are equivalent
when u = k(k – x). That is

~ff’(x, kk) = ~k(u) when u = k(k – x). (15)

Hence, we can only observe ~k (u) for points on the locus
u = k(i – X). This illustrates the difficulty of our problem

since if we knew ~k (u) for all u then we could use a blind
deconvolution algorithm to estimate the distortion function
and remove its effect and, hence, recover -the object ~(u).

However, because we can Only observe &’k(U) on a finite
locus of points we must invoke another means of estimating
the distortion function.

Estimating the distortion function can be achieved by under-
standing it further. This is achieved by representing Ez (x, k)

as a WKB high frequency approximation [17]. The distortion
function then becomes

II(X, A;,k) = ~–m(x)-k x] (16)

where we have invoked the WKB approximation E. (x, k) =
e‘~ ‘s(x) in which S(x) denotes the wavefronts of the field

which depend on k. So now the problem of estimating
the distortion function has been reduced to estimating the
wavefronts S(x).

To simplify matters we choose to represent the difference
[S(x) – k .x] in (16) as a 2-D Taylor series expansion about
the origin so that

S(x) – k. XI = aoo + (aIoz + aoIg)

+ ~ (r?a20 + hyall + u02v2) + ~” ~ (17)

where the constants a~n, for m, n E {O, 1, .00 , } represent

the partial derivatives of [S(x) – k. x] about the origin with the
m and n, respectively, referring to the number of derivatives
with respect to z and y. It should also be noted that the a~rr
are functions of k. When the Born approximation is valid
the difference [S(x) – k . x] will be small and, hence, the
coefficients will also be all small. However, when the Born
approximation is not valid and the coefficients are large some
means of estimating them is required so their effect can be
removed.

By substituting (17) into (16) and invoking some well
known Fourier transform pairs [18] we can then write the

Fourier transform (12) of the distortion function as

&(u) = dk”oo6(u+ka10, v+kaol)

O F2[e( “)](u) (18)

where the 2-D delta function is denoted by 6(., .) and the exact
relation of the coefficients b20, blI, and b02 to the azo, a II,
and aoz is not important here and not listed.

We can then substitute (18) into (14) to obtain

~k(u)=6(U) @[d ‘QIJ~(u + kale, V + ~flOl)l

{ [(‘1/,2 ‘(L’U v’
@ exp j —+

b20
—+—
2b11 bo2)1}

o Y2[J’’”J(U) (19)

where it should be noted again that E~fs (x, kk) = ~k(u)

when u = k(k – x) and that the a~. will be different for

each k.
The expression (19) forms the essence of our improve-

ments to the Born approximation. Its significance can be
best understood by considering its effect on the observable
(observable from E~fs (x, kk)) part of the spectrum of 6(u)

and by making comparisons with the conventional Born ap-
proximation. For the Born approximation the observable part

of the spectrum of 6(u) corresponds to the locus of points

described by the extremity of the vector u = k(k – x) and

is a circle centered at kk and whose radius is k [4]. This
is illustrated in Fig. 1(a). When we take into account the
distortion function, the observable part of the spectrum of
d(u) is somewhat altered. To understand how it is altered
it is useful to consider the effects of the individual a~~
in turn. The first coefficient aoo simply adds an additional

‘“”” to the spectrum. The second set of termsphase term eJ
in our expansion (those corresponding to a lo and aol in the

delta function) translate the observable part the spectrum of
O(u) by kalo and kaol in the u and v coordinate directions,
respectively, [by —kalo and —kaol with respect to the origin
of ~k(u)]. If we let a = (altj, aol )T then the corresponding
locus o! points is described by the extremity of the vector
u = k(k + a – X) and is a circle centered at k(k + a) whose

radius is k. This is illustrated in Fig. 1(b). The effect of the
distortion function can clearly be seen as a translation of the
observable part of the spectrum which will be different for each
k. The third set of terms in our expansion distorts the value of
the spectrum on the locus by a convolution with a Gaussian-
like function. If the coefficients are small, then the Gaussian
will be narrow, causing minor distortion. The remaining higher
order terms in the series will also cause distortion; however,
we will not consider their detailed effects further other than to
say they will be small if their corresponding coefficients are
also small. It can also be seen that the Born approximation is a
special example of ( 19) when all the coefficients anm are taken
to be zero and, hence, there is no translation or phase shift.

Clearly, if we could estimate some of the am. from the
measurement data then we could correct for the distortion
connected with the additional phase and translations. In this
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part of the spectrum 6(U)
of-the object under-the c;nventlonal and enh~nced Born ~pprommadons
when either k or k are varied, For the conventional Born tpproximatlon,

the covemgeof the spectrums as (a) when k lsvmled for fixed k andn as
(b] when h is varied foriixed k. For the enhanced Born approximation the
Coleizdgeof the spectrum is as (c) when k is varied for fi~edk and is as (d)
when k 1s vanecl for fixed k The effect of the transkmon 1s clearly visible
for the enhanced approximation

way, we could provide enhancements to the Born approxi-

mation and, hence, diffraction tomography. Before proceeding

with attempting to estimate the O,m,n, which isdiscussed in the

next section, it is useful to discuss two further aspects of the

interpretation of the distortion function.

The first result concerns how the spectrum of O(u) can be

collected over 2-D space so a 2-D inverse Fourier transform

can be invoked to reconstruct the object O(u) and, hence, the

refractive index n(x). Under the conventional Born approxi-

mation this is generally performed by collecting measurements
over a range of propagation directions k, so that the 10CUSin

Fig. 1(a) is rotated about the origin. The result is shown in

Fig. 2(a). An alternative method sometimes used is to utilize a
range of k but fixed k. The coverage thereby achieved is shown

in Fig. 2(b). However, under our interpretation of the distortion

function this conventional interpretation is somewhat altered.

The result of incorporating the effect of the distortion function

for the two situations just described are given in Fig. 2(c) and

(d). It should be clear the translation caused by the distortion
function has a significant effect on the coverage achieved and

is different from the conventional interpretation.

The second result worth discussing is deducing the ap-

proximate physical meaning of the coefficients u,,,,,,,. These

depend on the wavefronts S(x) and so to gain insight, we

approximate the wavefronts by assuming that they do not

refract significantly and travel along the same path as the

incident wavefield. The electrical path length of the wavefronts

is then simply the integral of the refractive index along straight

paths. For planar incident waves propagating along the r-axis

S(x) can then be approximately written as

i

.x~
S(IQ, y) = ‘71(1.y) d.r. (20)

—m

The coefficients can then be estimated by taking the derivatives
of the difference (17). For example if the object is a circular
cylinder with radius To and center at the origin then Uoo can

be approximated by

aOo = ro[7z(0, 0) – 1]. (21)

The coefficients alo and aol have a similar physical meaning
based on (20). By taking derivatives at the origin we can also
approximately detine u 10 and a. 1 as

Clo s [77((), ()) – 1]

and

(/01 =0.

Thus it is clear the coefficients depend
object. However, in our imaging problem
the ttnapproximated coefficients from the
alone.

(22)

intimately on the
we must estimate
measurement data

IV. ESTIMATING THE DISTORTION FUNCTION

To alleviate the estimation process, we introduce various
levels of enhancements by considering only a limited number
of terms in the Taylor series (17). In particular we introduce
three levels of enhancements and these are written as

F(u) = o(u)eJ~””” (23)

F(u) = o(u) @ [e@””6(7L + ka~o, v + IW,,l )] (24)

fi(u) = 6(U) @!~eJ~’J””6(/L+ ku,lo, L + ka~~)]

{ [(‘1/’ ILL’ v’
(3 exp j —+

tlzo
—+—
2h~~ 1)02)1}(25)

where it should be noted again that E$~ S(x, kk) = ik (u)

when u = L(k – x ) and that the n ,m,, will be different for

each k. Clearly, each of the equations takes into account an
additional term in the distortion function. We refer to the
various levels of enhancement represented by (23)–(25) as,
respectively, enhancements one, two, and three. In Sections

IV-A–IV-C we describe methods for estimating the terms in
the distortion function for each of the enhancements.

A. Estimation for Enhancement One

Enhancement one is written in (23). Mathematically, it
corresponds to when only the aoo term is assumed significant
and the remaining a,nn assumed negligible. Consequently,
only aoo need be estimated.

The technique adopted here for estimating aoo is based upon
calculating E~fs (x. kk) for two wavenumbers. Iil and kz,
say. From our earlier discussion. we know that this gives us
spectral information about e~‘a”” [n2(x) -11 ontwocirclesof
radius kl and kz. Because we are also assuming that only Uoois
significant, we know these two circles intersect at the origin of
Fourier space since alo and aol are taken as zero. The point
of intersection occurs when x = k, the forward-scattering
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Fig. 3. Illustration of our technique for estimating [(lo and cfol for the
enhanced lBorn approximation,

direction. We also know at this point of intersection that the
value of the far field at ,kl and kz differs from the spectrum of
6(u) by, respectively, the phase factors dk”’““” and e~~’a’]~, A
straightforward estimate of Ooo can consequently be obtained
from the difference between the phases of ,?3~fs(x, kl k) and

E{fs (x, k2k) in the forward direction x = k. This may be

expressed as

L?zf’(x, k~k) – Lqf’ (x, klk)
UO(J= -

r$z – kl
(26)

where x is taken in the forward direction k, and L denotes
the phase of.

Although this process is reasonably straightforward, recon-
struction by simply altering the phase will likely produce
improvements to the Born approximation.

B. Estimation for Enhancement T~vo

Enhancement two is written in (24). It takes into account
an additi~onal term in the distorting function as compared to
enhancement one. Consequently, aoo, a lo, and Uol need to be
estimated.

The technique adopted for estimating the coefficients is to
again calculate Ejjs (x, kk) for two wavenumbers, kl and

kZ say. This case. however, gives us spectral information
about e~~“””O(u) on two circles of radius Al and kz, which
not only have different diameters but are also translated
by the coefficients a lo and aol, as shown in Fig. 3. This
implies that the intersection point of the circles is now shifted
away from the origin, At this intersection point the value of
E!f’ (x, kk)/k2 fork, and kz will equate apart from the phase
fa&ors e~~’‘“o and eJ~’a””.

Consequently, a straightforward method to estimate the
translation introduced by aol and O,1ois to find a point where
l~~f’(x, klk)/k~ I and l13{f’(x, k2k)/k~ I equate. At this
point we can then use (26) to determine uoo. Clearly, in
practice there might be several points where the field values
equate so to eliminate this possibility we invoke measurements
from more than just two values of k (usually we utilize five
different k).

To formalize this procedure we write a cost function as

C(aoo) ale) “01)= ~ lle’k’’”oo~fjs(x ~P@/~;
P#q

— eJk<’u[]uEff3(x, kqk)/k~ll (27)

where p and y run over the number of measurements taken

and x is taken at the point of intersection. We then deter-
mine the alo and aol that minimizes this cost function. A
straightforward method for finding the minimum is to invoke
an exhaustive search. The computational intensive nature of
this can be reduced by realizing that the vector made up as
(ulo, uol )T will approximately point in the direction of k and
so we can restrict our search area appropriately. The search
procedure essentially takes three steps and these are: 1) choose

a particular a lo and aol and find the corresponding intersection
points; 2) calculate a[,cl at this intersection point by utilizing
(26) and calculate (27); and 3) choose the next Ulo and UO1
and repeat the above steps until a global minimum of the cost
function is found.

C. Estimation for Enhancement Three

Estimating the third and further terms in the series is
in principle different from determining the first and second
terms. This is because the third and further terms in the
distortion function have effects over a finite area in the Fourier
domain. Consequently, to estimate them one needs to know
the spectrum also over a finite area. However, because the
measurement data only allows us to observe the spectrum
on a locus of points described by a circle this is difficult.
Consequently, we have been unable to suggest a practical
method for performing this. A@possible avenue, however,
would be to utilize a continuum of k and try and estimate

the effects of the third term from these.

V. SIMULATION RESULTS

In this section, simulation results of reconstructing or imag-

ing objects under enhancement one and two are described so

that the performance and significance of the enhancements

can be demonstrated.

A necessary part of simulating reconstruction algorithms is

obtaining suitable measurement data upon which the reccrn-

struction algorithm will operate. In general, this is nontrivial

and so we restrict our objects to various configurations of

concentric and nonoverlapping eccentric cylinders in which

each cylinder has an arbitrary constant refractive index which

is real and nonnegative. The measurement data from these ob-

jects is calculated by the exact formulation of mode-matching

and addition theorems (to effect mode-matching on eccentric

cylinders) [17]. The data so obtained is completely indepen-

dent of the inversion method and consequently, will form an

unbiased test for our enhancements. To make some quantitative

comments about our simulations, we also find it useful to

define L to be the largest linear dimension, in wavelengths,
of the particular object under consideration.

In the simulations of enhancement one, we utilize measure-
ments from two wavenumbers whose ratio is ICI/k2 = 1.1.
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for (a) Born approxlmatlon, (b) Rytov appro~lmatlon, (CJ enhancement one.
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the original and reconstructed object profiles

The value of this ratio has an effect on the noise sensitivity of
the reconstruction as discussed at the end of Section V-A.

In the simulations for enhancement two, we use measure-
ments from five wavenumbers, to estimate the coefficients

Oou, [~lo, and aol, such that the ratio of the maximum to
minimum wavenumber is about five; however, we only use
the measurement data from the largest wavenumber for the
reconstruction itself. Another important consideration under
enhancement two is the effect of data missing at the center of
Fourier space as shown in Fig. 2(c). In general, the result of
this hole creates a dc offset occurring in the reconstruction.
This artifact is annoying in the reconstruction so is best
removed. It can be removed by interpolating over the missing
low frequency area or by utilizing measurement data from the
lowest wavenumber for filling in the missing data in the “hole.”

After extracting the various coefficients reconstruction was
then performed by backpropagation [19].

A. Circularly $wurwtric Objects

The first set of reconstruction results are for circularly
symmetric objects which in our case consist of either single
cylinders or concentric cylinders. For circularly symmetric
objects. the coefficients {Jrr,n are the same for all k.

Altogether we provide five numerical examples of recon-
structions for circular symmetric objects. For each simulation
four results are provided and these are reconstruction by:
a) the conventional Born approximation as defined in (8)
when D(x, k, k) = 1; b) the Rytov approximation using the
implementation given in [4]; c) enhancement one as specified
in (23); and d) enhancement two as specified in (24). Only
the vertical cross section along the x-axis of the cylindrical
objects with units of wavelength are illustrated to provide
easier comparisons between various results. However, it must
not be forgotten that they are in fact circular objects. The first
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c \/
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Fig. 5 Slmulatlon re~ults of recrmstraction of an object consisting of a single
cyhnder of mdius r 1 = 3} and refracti~e index n 1 = 1 10 The results we
for (J) Born approxlmatlon, (b) Rytov approxlmatlon, (c) enhancement one,
and (d) enhancement two The sohd and broken lines, respectl~,ely, represent
the orlgmal and reconstructed object profiles

two examples are single cylinders while the other examples

consist of concentric cylinders of various refractive indices.

The results of reconstructing the refractive index n(x)

for the two single cylinder objects are shown in Figs. 4

and 5. In each figure it can be observed that both of our

enhancements perform better than the conventional Born and

Rytov approximations and it is only in Fig. 4 for which

the conventional Born and Rytov approximations perform

reasonably. For the Rytov approximation we should also note

that distortion occurs outside the object areas in both these

examples. It can also be observed that enhancement two

performs the best overall.

The remaining three circular symmetric objects consist

of several concentric cylinders of various refractive index.

The results are shown in Figs. 6–8. The conventional Born

and Rytov approximations perform poorly in all these ex-

amples. Again, however, our enhancements perform well

and enhancement two performs the best. It should be noted

that the example in Fig. 8 has been proposed by other

researchers [20] as a canonical object for which inverse

algorithms can be compared. Both our enhancements are a

significant improvement over the conventional Born and Rytov

approximations for this example which is a good result in

itself.

To better understand our enhancements we have also tab-

ulated the estimated values for UOO.W1Oand Uol in Table

I. Alongside these values, we have also listed the values

obtained by utilizing our approximate formulation as given

in (20)–(22). In the examples, enhancement two ‘agrees well

with our approximate values.

Results of reconstruction with added noise contamination

are listed in Table II. In our simulations, the contamination

was modeled as being additive. The level of the contamination
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Fig. 6. Simulation results of reconstruction of an object consisting of
concentric cylinders with radii rl = 3A. rz = 6A, and refractive indices
n ~ = 1.05. nz = 1.025, respectively. The results are for (a) Born

approximation, (b) Rytov approximation, (c) enhancement one, and (d)
enhancement two. The solid and broken lines, respectively, represent the
original and reconstructed obJect profiles.
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Fig. 7. Simulation results of reconstruction of an object consisting of
concentric cylinders with radii TI = 3A, r2 = 6A and refractive indices
n 1 = 1.1, n ~ = 1.05, respectively. The results are for (a) Born approxima-
tion, (b) Rytov approximation, (c) enhancement one, and (d) enhancement
two. The solid and broken lines, respectively, represent the original and
reconstructed object profiles,

is specified in decibels (dB) by

C2(x)
SNR = 10 ]oglo —

E~f” (X)
(28)

where the bar and 2 superscript indicate signal power. In our
case the data is complex so c(x) is also complex, having
both a random magnitude (uniformly distributed in the range
O to b, where b is a positive constant) and a random phase
uniformly distributed in the range – r to ~. The normalized
mean square error (NMSE) between the original reconstruction
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Fig. 8. Simulation results of reconstructionof an object consisting of
concentric cylinders with radii rl = 2A, 7 z = 4A, T3 = 6A, and refmctive
indices nl = 1010, nz = 1.039, n3 = 1.025, respectively (see [20]).
The results are for (a) Bom approximation, (b) Rytov atmroxlmadon,(c). . . .
enhancement one, and (d) enhancement two. The solid and broken
respectively, represent the original and reconstructed object profiles.

n(x) without noise and the degraded reconstruction n(x)

noise is defined by

NMSE[n(x), n(x)] = 100 X
Var [n(x) – n(x)]

Var [n(x)]

where Var is variance.

In the results of the reconstruction with added noise

lines,

with

(29)

con-

tamination (Table II) some interesting points can be raised.
For enhancement one the value of the ratio kl /k2 plays an
important role in the noise sensitivity. In our simulations when
kl /kz is 1.1 noise contamination in excess of 20 dB causes
significant increases in degradation. However, below this level,
the sensitivity to noise is similar to the conventional Born
approximation. This threshold effect is because a. is given by
(26) where it is clear that the smaller the difference kl – Itz
the greater will be the sensitivity to noise. It is found that
if an error greater than 10% occurs in the estimation of a.

then significant increases in degradation in the reconstruction
occurs and for kl /k2 = 1.1 this occurs when the SNR >20
dB, However, this threshold can be increased by increasing
the ratio kl /kz. For enhancement two, noise sensitivityy is
also generally higher than that for the conventional Born
approximation. The reason for this is that for enhancement
two, the estimation of the additional coefficients a lo and
aol introduces additional uncertainty. However, this is offset
by utilizing data from five different k thereby causing some
reduction in noise sensitivity dtte to averaging.

B. Asymmetric Objects

To further demonstrate our enhancements, reconstruction
of an asymmetrical object is provided in this section. For
asymmetric objects, the coefficients amm are different for
different k. The asymmetric object we trial consists of three
eccentric cylinders. The radii of the cylinders which make up



386 IEEE TRANSACTIONS ON MICROWAVETHEORY AND TECHNIQLIES. VOL -M. NO 3. MARCH 1996

1.1> 11

= 1.05 = 1.0.5

1 1

Y x

(a)

Y x

(b)

1.1 1.1

.05 c 05

1 1

Y x

(c)

Y x

(d)

FIR. 9. ReconstructIon of the asymmetric oblect defined In (30): (a) and
(bi are, respectively, the orqynal and conventional Born appro~lmalion; (c)
and (d) are, respectively, reconstruction by in~oking enhancement one and
enhancement two.

the objects are all equal to T3A.The exact configuration of the
object is specified as

Object: /71 =1.02. 1-~=% ’1, center =(–-l, i. –4.5A)

‘IIQ=1.0.5, rl =3A. center =(–4A, 4.5A)

nj =1.08. r2 =:3A. center =(4..5A, O). (30)

The results of reconstructing this object are shown in Fig.
9. Both enhancement one and two perform better than the
conventional Born approximation. It is found that enhancement
two gives a good estimation of the height (refractive index) of
thecylinders in all cases. However, theprofile of the cylinders
are distorted. Results from other asymmetrical objects of this
type provide similar findings.

VI. DISCUSSION

From our simulation results. It has been demonstrated that
both enhancement one and two provide significant improve-
ments in the reconstruction quality of the conventional Born
and Rytov approximations. Some further questions remain to
be answered concerning the range of the validity of these
enhancements, how the enhancements relate to the Rytov ap-
proximation and what additional computational requirements
do the enhancements require.

A. Appr<mimcrtion Validity

For the conventional Born approximation we know the
range of validity to be approximately specified as (r) —
l)L < h,i where b z 0.1 – 0.5 [4]. To deduce a similar
validity condition for our enhancements we must consider
the underlying approximations invoked. In our enhancements
essentially two approximations have been invoked.

The first approximation utilized is that of the WKB ap-
proximation ( 16) as a representation of the total field. Such

an approximation is predicated upon refraction predominating
over reflection which requires that spatial variations of the
refractive index n be small. To get an objective measure of
this we may assume that the strength of the reflections must

be smaller than the transmitted wave for the approximation to
be valid corresponding to a reflection ratio of less than one
half. If we assume that the discontinuities are along planar
interfaces

where rt 1

interface.
condition

the reflection coefficient can be given as

and rL2 are the refractive indices either side of the
By ensuring p < 0.5 in (31) gives us a validity

on our approximation as 0.75 < nl / n~ < 1.5.
Results of investigating this validity condition have been
confirmed by previous investigation which suggest that it is
an upper bound for the validity of (16) in [21].

The second approximation is introduced in (17) and relates
to how well the various terms in our approximation can model
the distortion function. The wdidity of this approximation is
likely to be dependent on the shape and distribution of the
refractive index. For enhancement one, this is lil..ely to be
similar to the conventional Born approximation except that
the additional constant phase term will increase validity by

up to a factor of two such that (71 – 1)~ < 2bA. This is
because the phase reference is at the center of the object rather
than the edge as for the conventional Born approximation.
This represents an increase of two for the validity of the

conventional Born approximation. For enhancement two, how-
ever, the validlty is even greater than this since the distortion
function is likely to be well modeled if the wavefronts vary
linearly with x.

Conclusions of this nature are supported by the simulation
results. Enhancement one is valid for a wider class of objects
that the conventional Born approximation but breaks down
when (n – l),L > ) as in Fig. 7. Under enhancement two
it can be observed that it performs well for all the circularly
symmetric objects. However. when significant deviations from
a simple refractive index distribution occur (as in Fig. 9),
degradation in the reconstruction increases.

B. Relation to the Ryto\ Apprn~inmtio~i

Although our enhancements have been obtained from con-
sideration of the Born approximation, it is also worthwhile to
consider why it outperforms the Rytov approximation and how
it may relate to the Rytov approximation [4].

To understand why our enhancements perform better than
the Rytov approximation. we need to consider the approxima-
tion in more detail. In some ways our enhancements can be
likened to the Rytov approximation since we are devising a
better approximation to E: the total field by including a linear
phase term. Although this linear ph~se term can be likened to
the Rytov approximation which utilizes an arbitrary function to
represent the phase the Rytov approximation neglects the term
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TABLE 1
A COMPARISONOF THE COEFFICIENTSOBTAINEDFROMTHE SIMULATIONRESULTSOF OUR ENHANCEMENTS

Numerical

13xample

figure 4

figure 5

figure 6

figure 7

figure 8

TO THOSEFROMTHE APPROXIMATETHEORY(20)

Estimated Coefficients Estimated coefficients Estimated coefficients

from (20) from enhancement one from enllaucement two

aoo l(a~o, aO1)Tl aoo aoo l(a~o,ao~)~l

0.942 0.050 0.784 0.834 0.052

1.885 0.100 1.426 1.690 0.099
—

1,41A 0.031 0.968 l.q$~ 0.036

1.414 0.044 1.306 1.506 0031

0.930 0.028 0.885 1.049 0.026
—.

387

TABLE II
SIMULATIONRESULTSOF NMSE FOR WHEN NOISE CONTAMINATIONWITH SNR OF 20 AND 25 dB

ARE ADDEDTO THE DATA, THE DEFINITIONSOF SNR AND NMSE ARE PROVIDEDIN SECTIONV-A

Numerical Example Born Approximation Enhancement One 13nhancenlent Two

20 dB 25 dB 20 clB 25 dB 20 dB 25 dB

figure 4 1.43 0.88 1.84 0.75 2.7 1.01

figure 5 1.97 1.35 5.8 2.49 5.2 2.1

figure 6 4.19 1.65 6.14 2.25 6.01 2.4

figure7 1,73 0.99 14.0 4.15 7.8 3.4

figure 8 5.49 2.18 3.63 1.25 4.8 2.01

which causes the Rytov approximation to perform worse than

the Born approximation for objects with large deviations in
refractive index [4]. In our enhanced approximations, this

term is not neglected and thus our enhanced approximation
performs better for objects with larger deviations in refractive
index than the Rytov approximation.

C. Computational Considerations

Our enhancements show that both enhancement one and two

offer improvements over the Born and Rytov approximations.
These improvements, however, must be weighed against the
computational costs.

The additional computational cost for implementing en-

hancement one is low. This is because we only require
additional computation for (26), which is a straightforward
calculation.

The additional computation cost for enhancement two is
higher, however, because we have to perform an optimization
(27) over a total of five wavenumbers. This requires an
increase in computational time by approximately a factor of

10–1 5 when measurements from five wavenumbers are used.
However, the computational competitiveness of this method
is still good in comparison to techniques based on exact

descriptions of wave motion,
The other significant increase in load will be acquiring

data from a range of frequencies. For enhancement one, this
data is only required at one other frequency differing by
approximately 10% from the first measurement. For enhance-
ment two, however, measurements from five wavenumbers

over a broadband are required. For measurement systems

that use wideband pulses to probe the object, this may not
be a problem since the wideband information in principle
is readily available. However, for CW measurement systems

additional scans of the object will be required at the different
wavenumbers.

VII. CONCLUSION

An important contribution of the research ~resented here

is the interpretation of the effects of refractive media on the

Born approximation. In particular we demonstrate that it can



38X IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44, N0. 3, MARCH 1996

be likened to additional phase and translation of the observed
object spectrum that is different for each angle of incidence k.

We further show how this phase and translation can be
estimated from the measurement data to improve on the
quality of the reconstruction. The concrete manifestation of
this approach is an algorithm that is based on the tech-
niques utilized in conventional diffraction tomography. The
numerical results generated by this algorithm suggest that in
general it can be expected to provide reconstructions that
are more accurate than those generated by the conventional
Born approximation. Considerations of the validity of the

.,
aPProxlmatlon for enhancement one inclicate that it is an

improvement over the Born approximation by a factor of two.
For enhancement two, the range of validity is even larger than
this. Moreover, we also show that the enhancements perform
better than the Rytov approximation for objects with large
deviations in refractive index.

We hope that through an approach of this kind improved
reconstruction quality is achievable without the increased
complexity of a full-wave description of the imaging or inverse
scattering problem.
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